| | Computer Fundamentals: Pradeep K. Sinha & Priti Sinha | |-------|---| | Lea | rning Objectives | | | | | In th | is chapter you will learn about: | | 111 (| is chapter you will learn about. | | | | | § | Non-positional number system | | § | Positional number system | | § | Decimal number system | | § | Binary number system | | § | Octal number system | | § | Hexadecimal number system | | | | | | | | | | | | (Continued on next slide) | | | | ## Number Systems Two types of number systems are: § Non-positional number systems § Positional number systems Non-positional Number Systems § Characteristics § Use symbols such as I for 1, II for 2, III for 3, IIII for 4, IIIII for 5, etc § Each symbol represents the same value regardless of its position in the number § The symbols are simply added to find out the value of a particular number § Difficulty § It is difficult to perform arithmetic with such a number system Positional Number Systems § Characteristics § Use only a few symbols called digits § These symbols represent different values depending on the position they occupy in the number ## Positional Number Systems - revious slide...) - § The value of each digit is determined by: - 1. The digit itself - 2. The position of the digit in the number - 3. The base of the number system (base = total number of digits in the number system) § The maximum value of a single digit is always equal to one less than the value of the base ## Decimal Number System ### Characteristics - § A positional number system - § Has 10 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Hence, its base = 10 - § The maximum value of a single digit is 9 (one less than the value of the base) - § Each position of a digit represents a specific power of the base (10) - § We use this number system in our day-to-day life (Continued on next slid ## Decimal Number System ## Example $2586_{10} = (2 \times 10^3) + (5 \times 10^2) + (8 \times 10^1) + (6 \times 10^0)$ = 2000 + 500 + 80 + 6 ## Characteristics § A positional number system § Has only 2 symbols or digits (0 and 1). Hence its base = 2 § The maximum value of a single digit is 1 (one less than the value of the base) § Each position of a digit represents a specific power of the base (2) § This number system is used in computers ## Binary Number System entitued from previous side...) Example 10101₂ = (1 x 2⁴) + (0 x 2³) + (1 x 2²) + (0 x 2¹) x (1 x 2⁰) = 16 + 0 + 4 + 0 + 1 = 21₁₀ ## In order to be specific about which number system we are referring to, it is a common practice to indicate the base as a subscript. Thus, we write: 10101₂ = 21₁₀ Representing Numbers in Different Number # Sometimes of the stands for binary digit Sometimes of the stands th ## Octal Number System (Continued from previous side...) § Since there are only 8 digits, 3 bits (2³ = 8) are sufficient to represent any octal number in binary Example $2057_8 = (2 \times 8^3) + (0 \times 8^2) + (5 \times 8^1) + (7 \times 8^0)$ = 1024 + 0 + 40 + 7 $= 1071_{10}$ ## Hexadecimal Number System ### Characteristics - § A positional number system - § Has total 16 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). Hence its base = 16 - § The symbols A, B, C, D, E and F represent the decimal values 10, 11, 12, 13, 14 and 15 respectively - § The maximum value of a single digit is 15 (one less than the value of the base) ## Hexadecimal Number System - § Each position of a digit represents a specific power of the base (16) - § Since there are only 16 digits, 4 bits (2⁴ = 16) are sufficient to represent any hexadecimal number in binary ### Example $$1AF_{16} = (1 \times 16^{2}) + (A \times 16^{1}) + (F \times 16^{0})$$ $$= 1 \times 256 + 10 \times 16 + 15 \times 1$$ $$= 256 + 160 + 15$$ $$= 431_{10}$$ ## Converting a Number of Another Base to a Decimal Number ## Method - Step 1: Determine the column (positional) value of each digit - Step 2: Multiply the obtained column values by the digits in the corresponding columns - Step 3: Calculate the sum of these products ## Converting a Number of Another Base to a Decimal Number (Continued from previous side.) Example 4706₈ = ?₁₀ Common values multiplied with the corresponding digits = 4 x 512 + 7 x 64 + 0 + 6 x 1 digits = 2048 + 448 + 0 + 6 - Sum of these products ## Converting a Decimal Number to a Number of Another Base ### **Division-Remainder Method** - Step 1: Divide the decimal number to be converted by the value of the new base - Step 2: Record the remainder from Step 1 as the rightmost digit (least significant digit) of the new base number - Step 3: Divide the quotient of the previous divide by the new base (Continued on next slide ## Converting a Decimal Number to a Number of Another Base Step 4: Record the remainder from Step 3 as the next digit (to the left) of the new base number Repeat Steps 3 and 4, recording remainders from right to left, until the quotient becomes zero in Step 3 $\,$ Note that the last remainder thus obtained will be the most significant digit (MSD) of the new base number (Continued on next slide | Converting a Decimal Number to a Number of Another Base (Continued from previous side.) | | |---|---| | Example | | | 952 ₁₀ = ? ₈ | | | Solution: 8 952 Remainder | | | 119 S 0
14 7 | | | 1 6 0 1 | | | Hence, 952 ₁₀ = 1670 ₈ | | | Rof Page 26 Chapter 3: Number Systems Slide 22/40 | | | - Andrew San - Andrew State Control of the | | | | | | Computer FundamentalSakradeep K, Sinna 3-Pritt Sinna | 1 | | Converting a Number of Some Base to a Number of Another Base | | | Method | | | Step 1: Convert the original number to a decimal number (base 10) | | | Step 2: Convert the decimal number so obtained to the new base number | | | | | | | | | | | | (Continued on next slide) Ref Page 27 Chapter 3: Number Systems. Slide 22/40 | | | nor eight at Coopures runnon systems. Since 23/40. | | | | | | | _ | | Converting a Number of Some Base to a Number | | ## ## Converting a Number of Some Base to a Number of Another Base Step 2: Convert 209₁₀ to base 4 | 4 | 209 | Remaind | |---|-----|---------| | | 52 | 1 | | | 13 | 0 | | | 3 | 1 | | | 0 | 3 | | | | | Hence, $209_{10} = 3101_4$ So, $$545_6 = 209_{10} = 3101_4$$ Thus, $545_6 = 3101_4$ ## Computer Fundamentals, Process & State & Pritt State Shortcut Method for Converting a Binary Number to its Equivalent Octal Number ### Method Step 1: Divide the digits into groups of three starting from the right Step 2: Convert each group of three binary digits to one octal digit using the method of binary to decimal conversion (Continued on next slide ### Computer Fundamentals Produced & Sinna & Pritt Sinna Shortcut Method for Converting a Binary Number to its Equivalent Octal Number ## Example 1101010₂ = ?₈ Step 1: Divide the binary digits into groups of 3 starting from right <u>001</u> <u>101</u> <u>010</u> Step 2: Convert each group into one octal digit $001_2 = 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1$ $101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 5$ $010_2 = 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 2$ Hence, $1101010_2 = 152_8$ ## Shortcut Method for Converting an Octal Number to Its Equivalent Binary Number Method Step 1: Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion) Step 2: Combine all the resulting binary groups (of 3 digits each) into a single binary ## Shortcut Method for Converting an Octal Number to Its Equivalent Binary Number ## Example 562₈ = ?₂ Step 1: Convert each octal digit to 3 binary digits $5_8 = 101_2, \qquad 6_8 = 110_2,$ $2_8 = 010_2$ Step 2: Combine the binary groups $562_8 = \underline{101} \quad \underline{110} \quad \underline{010}$ 5 6 Hence, $562_8 = 101110010_2$ ### Shortcut Method for Converting a Binary Number to its Equivalent Hexadecimal Number ## Method Step 1: Divide the binary digits into groups of four starting from the right Step 2: Combine each group of four binary digits to one hexadecimal digit # Computer Fundamentals, Goldon & Status ## Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number ### Method - Step 1: Convert the decimal equivalent of each hexadecimal digit to a 4 digit binary number - Step 2: Combine all the resulting binary groups (of 4 digits each) in a single binary number (Continued on next slide ## Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number ### Example $2AB_{16} = ?_2$ Step 1: Convert each hexadecimal digit to a 4 digit binary number $$2_{16} = 2_{10} = 0010_2$$ $A_{16} = 10_{10} = 1010_2$ $B_{16} = 11_{10} = 1011_2$ ## Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number Hence, $2AB_{16} = 001010101011_2$ ## Fractional Numbers $\label{lem:fractional numbers} \textit{ are formed same way as decimal number system}$ In general, a number in a number system with base \boldsymbol{b} would be written as: a_n a_{n-1}... a₀ . a₋₁ a₋₂ ... a_{-m} And would be interpreted to mean: $a_n \ x \ b^n + \ a_{n-1} \ x \ b^{n-1} + ... + \ a_0 \ x \ b^0 + \ a_{-1} \ x \ b^{-1} + \ a_{-2} \ x \ b^{-2} + ... + \ a_{-m} \ x \ b^{-m}$ The symbols $\mathbf{a_{n}},\ \mathbf{a_{n-1}},\ \dots,\ \mathbf{a_{.m}}$ in above representation should be one of the b symbols allowed in the number system ## Formation of Fractional Numbers in Binary Number System (Example) ## Binary Point Position 4 3 2 1 0 1 -2 -3 -4 Position Value 24 23 22 21 20 2-1 2-2 2-3 2-4 Quantity Represented (Continued on next slide # Formation of Fractional Numbers in Binary Number System (Example) (Continued from protous side.) Example 110.101₂ = 1 x 2² + 1 x 2¹ + 0 x 2⁰ + 1 x 2⁻¹ + 0 x 2⁻² + 1 x 2⁻³ = 4 + 2 + 0 + 0.5 + 0 + 0.125 = 6.625₁₀ ## Computer Fundamentalls Analogy X, Slaria & Prill Slaria Formation of Fractional Numbers in Octal Number System (Example) Octal Point Position 3 2 1 0 - -1 -2 -3 Position Value 8³ 8² 8¹ 8⁰ 8-¹ 8-² 8-³ Quantity 512 64 8 1 ¹/₈ ¹/₆₄ ¹/₅₁₂ Represented # Computer Fundamentals Reputer System Formation of Fractional Numbers in Octal Number System (Example) Example 127.54₈ = 1 x 8² + 2 x 8¹ + 7 x 8⁰ + 5 x 8⁻¹ + 4 x 8⁻² = 64 + 16 + 7 + ⁵/₈ + ⁴/₆₄ = 87 + 0.625 + 0.0625 = 87.6875₁₀ | Computer | Fundamentals: Pradeep K, Sinha & Priti Sinha | |--|--| | Key Words/Phrase | s | | § Base
§ Binary number system
§ Binary point | § Least Significant Digit (LSD)
§ Memory dump
§ Most Significant Digit (MSD) | | § Bit § Decimal number system § Division-Remainder technique | § Non-positional number system § Number system | | § Fractional numbers § Hexadecimal number system | § Octal number system
§ Positional number system | | | | | | | | | | | Ref Page 34 Chapter 3: Nun | nber Systems Slide 40/40 |