
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
Non-positional number system
B Desimal num syster
\qquad
B Decimal number system
number system \qquad
Octal number system
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad of its position in the number \qquad
B Difficulty
B It is difficult to perform arithmetic with such a \qquad number system

positional Nuntoer Systens

B Characteristics
B Use only a few symbols called digits

B These symbols represent different values depending on the position they occupy in the number
(Continued on next slide)

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
B The maximum value of a single digit is 9 (one
\qquad power of the base (10)
\qquad

Ref Page 21

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Slide $11 / 40$ \qquad
Representing Numbers in Different Nussiber
Systems
In order to be specific about which number system we
are referring to, it is a common practice to indicate the
base as a subscript. Thus, we write:

$$
10101_{2}=21_{10}
$$

Ref Page 21

\qquad

$0 ¢ 5$	NUNDEr Syジ゙ens
Characteristics	
B A positional number system	
B Has total 8 symbols or digits（ $0,1,2,3,4,5,6,7$ ）． Hence，its base $=8$	
B The maximum value of a single digit is 7 （one less than the value of the base B Each position of a digit represents a specific power of the base（8）	
（Continued on nexts side）	
Ref Page 22	Chapter 3：Number Systems Slide 14

\qquad
\qquad
B A positional number system Hence，its base $=8$
B The maximum value of a single digit is 7 （one less
\qquad

B Each position of a digit represents a specific power of \qquad
\qquad
\qquad

Ref Page 22 Slide $14 / 40$ \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
$=1 \times 256+10 \times 16+15 \times 1$
$=256+160+15$ \qquad
\qquad

Ref Page 22 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Converting a Decinal Number to al Iuns'ger of Another Base \qquad

Division-Remainder Method

Step 1: Divide the decimal number to be converted by the value of the new base

Step 2: Record the remainder from Step 1 as the rightmost digit (least significant digit) of the new base number

Step 3: Divide the quotient of the previous divide by the new base
\qquad
\qquad
\qquad
\qquad
\qquad Chapter 3: Number Systems (Continued on \qquad

Converting ar Decinal Number to a Number of Another Base
 Step 4: Record the remainder from Step 3 as the next digit (to the left) of the new base number

\qquad
\qquad

Repeat Steps 3 and 4, recording remainders from right to left, until the quotient becomes zero in Step 3

Note that the last remainder thus obtained will be the most significant digit (MSD) of the new base number
\qquad
Example
$952_{10}=? 8$
Solution:
$8 \mid 952$ Remainder
$119{ }^{\mathrm{s}} 0$

14	7
-1	6

Hence, $952_{10}=1670_{8}$
Slide 22/40
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Converting a Number of Some base to an Nomber of Another E'ase

Example
$545_{6}=?_{4}$ \qquad

Solution:
Step 1: Convert from base 6 to base 10
$545_{6}=5 \times 6^{2}+4 \times 6^{1}+5 \times 6^{0}$
$=5 \times 36+4 \times 6+5 \times 1$
$=180+24+5$
$=209_{10}$

Converting a Number of Some Base io as Nussteer of AnOther Bjse
Step 2: Convert 209_{10} to base 4

4	209	Remainders
	52	1
	13	0
	3	1
	0	3

Hence, $209_{10}=3101_{4}$
So, $545_{6}=209_{10}=3101_{4}$
Thus, $545_{6}=3101_{4}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Ref Page 29 \qquad
Shorsut Method for Converting a Binary Nunseer to jes Egujvalenic Octal Junseer \qquad
Example
$1101010_{2}=?_{8}$
Step 1: Divide the binary digits into groups of 3 starting from right
$\underline{001} \underline{101} \quad \underline{010}$
Step 2: Convert each group into one octal digit \qquad
$001_{2}=0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=1$
$101_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=5$ \qquad
$010_{2}=0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=2$
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

 Number to lis Egnjvalent Birasy Junseer

Method

Step 1: Convert the decimal equivalent of each hexadecimal digit to a 4 digit binary number
Step 2: Combine all the resulting binary groups (of 4 digits each) in a single binary number

Coninued on next slide)
Ref Page 31
\square
Chapter 3: Number Systems
Slide 32/40
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
$a_{n} \times b^{n}+a_{n-1} \times b^{n-1}+\ldots+a_{0} \times b^{0}+a_{-1} \times b^{-1}+a_{-2} \times b^{-2}+$
\qquad should be one of the b symbols allowed in the number system

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Formation of fractional Numbers in Octal Nunder Systens (Esansple)	
Example	
$\begin{aligned} 127.54_{8} & =1 \times 8^{2}+2 \times 8^{1}+7 \times 8^{0}+5 \times 8^{-1}+4 \times 8^{-2} \\ & =64+16+7+5 / 8+4 / 64 \\ & =87+0.625+0.0625 \\ & =87.6875_{10} \end{aligned}$	
Ref Page 33 Chapter 3: Number Systems Slide 39/40	

